
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 6, 103-1 12 (1986) 

ON NUMERICAL MODELLING OF EMBEDDED 
SUBSONIC FLOW 

M. P. DAVIS 

Concentration Heat and Momentum Ltd. 40 High Street, Wimbledon, London SW19 SAU. U . K .  

A. C. H. MACE 

Royal Armament Research and Development Establishment, Westcott, Aylesbury, Buckinghamshire, HP18 O N Z ,  U.K. 

AND 

N. C. MARKATOS 

Faculty of Technology, School of Mathematics, Statistics and Computing, Thames Polytechnic, London SEI 8 
6PF. U.K.  

SUMMARY 

An analytical model has been developed for computing embedded subsonic flow in rocket plumes from 
underexpanded axisymmetric supersonic nozzles. Numerical procedures based on the analysis have been 
incorporated in a simplified, non-reacting exhaust structure program and calculations for representative 
plume conditions performed. The technique is numerically stable and has provided satisfactory predictions of 
Mach-disc associated embedded subsonic flow. 
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INTRODUCTION 

For a gas jet exhausting from an axisymmetric nozzle to a lower pressure surrounding, the flow will 
follow a Prandtl-Meyer expansion at  the corner of the nozzle.' The expansion fan will be reflected 
as compression waves from the constant-pressure jet boundary and subsequently from the jet axis 
(Figure 1). As the nozzle-exit/ambient pressure ratio is increased the compression waves intersect 
and coalesce to form a boundary shock wave. Further downstream the compressive effect causes 
the shock wave to become so strongly curved that regular reflection from the jet axis is not possible; 
instead a nearly normal shock wave, known as a Mach disc or Riemann wave, occurs. The 
boundary shock, Mach disc and reflected shock are joined at  a triple point and flow downstream of 
the normal shock becomes locally subsonic (Figure 2). 

Axisymmetric non-recirculating rocket exhaust structures can be computed efficiently from 
time-averaged Navier-Stokes equations by means of marching  algorithm^.^.^ These procedures 
are satisfactory for plumes with underexpansion pressure ratios < 20. However, the techniques 
employed to evaluate the pressure field in the schemes employed in, for example, References 3 and 4 
are, in general, numerically unstable when the volume of Mach-disc associated embedded subsonic 
flow is comparable with or larger than that of the finite-difference grid cells. This paper is concerned 
with a method for computing such flow, which can be incorporated within an existing marching- 
scheme program. The procedures were developed and tested in a GENMIX-derived code.5 These 
techniques may be readily incorporated into any marching-scheme rocket-exhaust program with 
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Figure 1 .  Flow field of a moderately underexpanded exhaust plume 
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Figure 2. Flow field of a highly underexpanded exhaust plume 

provisions to iterate required only in the locality of Mach discs. No widely available spatially 
resolved data for detailed comparison with the present solution exist. Therefore, the results have 
still to be validated. 

MATHEMATICAL FORMULATION 

The conservation equations for momentum, mass and stagnation enthalpy are expressed below in 
the Von Mises co-ordinate system (x-I)) for axisymmetric flow.5 

Conservation of streamwise momentum: 

where I) is the stream function, p is the static pressure, p is the density, u is the fluid velocity in the 
longitudinal direction, p is the effective viscosity and x and r are the longitudinal and radial 
distances, respectively. The derivation of the above equation is given in Reference 5. 
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Conservation of lateral momentum: 

- a P  a0 

ax a* 
- - - r -  

where u is the lateral velocity and viscous terms are omitted. 
Conservation of mass: 

S$ = purdr (3) 
Equation (3) is used to define the finite-difference grid upon which the conservation equations are 
solved. The grid uses x--0 co-ordinates in place of x-r  co-ordinates, where o is the dimensionless 
stream function -0 = ($ - t,b,)/(t,bE - t,bl), and $I and $E stand for the stream functions at the internal 
and external boundaries of the grid respectively.’ t,b is obtained from equation (3) above. 

Conservation of stagnation enthalpy: 

where r is the effective transport coefficient for stagnation enthalpy (H). Finally, the temperature 
(T) is computed from the enthalpy, the constant-pressure heat capacity (C,) and the velocity as 
T = (H - u2/2)C; the density is computed from the perfect-gas equation of state, and the Mach 
number, required in the evaluation of the pressure field, is defined as 

where y is the ratio of the specific heats. 
Equations (l), (2) and (4) provide a means for calculating the principal dependent variables, but 

provide no guarantee that the continuity equation is satisfied. Equation (3) is satisfied by solving 
a pressure-correction equation and appropriately modifying velocity and pressure fields so that 
mass and momentum are conserved simultaneously. The pressure-correction procedures of, for 
example, References 3 and 4 are unstable in the Mach-disc region and a rigorous treatment of 
this analysis is required. The pressure-correction equation is derived by requiring that the 
streamwise cell face areas, computed from the calculated velocities and densities, be the same 
whether derived from considerations of continuity or of cell geometry. 

C o n s t a n t w  Lines 

/ 

Figure 3. A control volume 
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Consider the streamtube volume of Figure 3. A conventional staggered-grid is used, according to 
which velocities are staggered with respect to point P at which all other variables are evaluated. 
This means that the control cells used for momentum balances are themselves staggered with 
respect to the cells used for continuity balances and as such they have, in general, different cross- 
sectional flow areas. Let A represent the flow area associated with the continuity equation and a 
represent the cross sectional flow area associated with the momentum equation. The compatibility 
of the cell area is 

A, - A, - E = a, -aw (6) 
where E represents the area increase of A, associated with entrainment. The 'continuity' areas are, 
of course, derived from equation (3), e.g. Ai=6$ i / (pu) i ,  where i stands for e or w. From the 
geometry of Figure 3 the following relation for the difference in 'momentum' areas can be derived, 
assuming axisymmetry extending over a sector of one radian. 

aE - a, = 6x(r ,  tan a, - r ,  tan a,), (7) 

where ai = ui/ui. It is appropriate to decompose the quantities u, u, p ,  p, A,  a and c1 into approximate 
and corrected components such that, for example, the final pressure becomes p = p* + p'. The 
primed quantities are computed from the pressure-correction analysis and the starred quantities 
are computed from the solutions to equations (1)-(4). Applying this decomposition to equation (6), 
recalling that Ai = ~ 5 $ ~ / ( p u ) ~  from equation (3), substituting equation (7) for uE - a,, and ignoring 
second order ui contributions from cli yields 

(r ,  tanax - r, tancr:) + 
where the denominators of equation (8) are expanded to first order in primed quantities. This may 
be reduced to a form which isolates the cell continuity error E, as follows: 

where 

E + 6x [ r ,  tan a: - r ,  tan c1,*] 
&=---- d$e S$w 

(P4T (PI :  
It is necessary now to construct a method whereby the mass fluxes may be corrected and the error, 
E,  elliminated. This will be achieved by correcting the pressure field and subsequently re-evaluating 
equations (l), (2) and (4). Equation (9) may be written in terms of the pressure correction as follows: 

In order to simplify equation (10) let there be coefficients A, defined as 
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and 

axr, avi 
A ,  = :[ G], i = n, s; I = N, S 

Equation (10) may then be reorganized to give 

and the two-dimensional p‘ field computed as described in the Appendix. The A,  coefficients are 
simplified further by assuming the fluid to be an isentropic perfect gas. Equation (1 1 a), for the east 
and west coefficients, then becomes 

6*. (1 + M 2 )  
A ,  =I , i=e,w;Z=E,W 

(pu)i*2 ui* 

and equation (llb), for the north and south coefficients, reduces, with the aid of equation (3), to 

6x2ri 
(PU)?*6Yi ’ 

A,  = i=n,s;  I = N , S  

Throughout the analysis local incompressibility has been assumed. The compressible conditions of 
rocket exhaust plumes were found to be satisfactorily evaluated by weighting the denominator of 
equation (12) with a factor (1 + M 2 )  and iterating on all variables including the density. The final 
converged solutions satisfied momentum conservation and mass-continuity. 

NUMERICAL PROCEDURES 

The conservation equations for u, u and H were solved by dividing the calculation domain into 
discrete volumes (Figure 4), integrating equations (l), (2) and (4) over each cell and deriving a set of 
matrix equations similar to equation (12), but not including the downstream (E) terms.’ For a given 
pressure field, solutions to these equations were efficiently evaluated line-by-line using the tri- 

Computati ona 1 Constant w Constant x Constant Pressure Computational 
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I 
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Figure 4. Computational grid 
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diagonal-matrix algorithm (TDMA).6 The storage of the variables was therefore one-dimensional. 
The pressure-correction field was computed by solving equation (1 2) according to the method 
described in Reference 7;a summary of this is given in the Appendix. The solutions of equations (l) ,  
(2) and (4) and equation (12) were iterated to convergence. Details of the steps involved are as 
follows: 

(i) Initialise inlet conditions and grid variables (Figure 4). 
(ii) Calculate boundary conditions: GENMIX symmetry boundary on jet axis,' small-wave 

(iii) Move to next axial location in the jet. 
(iv) Compute boundary conditions and evaluate new grid. 
(v) Solve momentum and enthalpy equations. 

(vi) Evaluate temperature, density and Mach number. 
(vii) Evaluate the error and A, coefficients of equation (12). 

(viii) Repeat (iii) to (vii) from inlet to outlet. 
(ix) Solve the pressure-correction equation two-dimensionally and correct the pressure field. 
(x) Repeat (iii) to (ix) until convergence. 

theory on free-stream 

The boundary conditions at the outlet were av/ar = a p / a x  = 0. 
The pressure correction calculated from equation (12) was, for some flows, very large and the 

iterative cycle (iii)-(ix) occasionally became oscillatory. The pressure was therefore under-relaxed 
according to the equation 

Pnew = Pold + P' Rf (14) 
where the relaxation factor, Rf, was varied between 0.5 and unity. 

The algorithm described can be readily incorporated into a conventional marching-scheme 
program. Plume calculations proceed unchanged from the nozzle exit until a region of embedded 
subsonic flow is encountered. The program then halts and recommences upstream of the Mach disc 
following the sequence outlined above. When convergence through the Mach disc region is 
achieved the program reverts to the non-iterative procedures. The only significant increase in 
computer storage incurred involves two-dimensional arrays for the pressure, continuity errors and 
A, coefficients of the pressure-correction equation through the Mach disc region of the plume. 

CALCULATIONS 

In order to check the model, the two-dimensional iterative pressure-correction sequence was coded 
and incorporated in a non-reacting rocket exhaust program derived from GENMIX. For 
computational ease the turbulence was provided through a fixed effective-viscosity coefficient, 
p = 0.1 kgm-ls-l ,  and the heat capacities of the inert streams were set to C, = 1500kJ kg-' K-I .  

Calculations were performed to investigate the capability of computing embedded subsonic flow in 
rocket exhaust plumes. Results were examined to check numerical stability and physical 
plausibillity, but the extent to which Mach disc predictions are realistic will need to be re-examined 
when the procedures are incorporated in fully reacting exhaust structure calculations. Three sets 
of calculations will be discussed. The first considers how well the new pressure-correction equation 
computed wholly supersonic flow. Calculations commenced at the nozzle exit-plane and were 
performed for the conditions given in Table I. 

The grid consisted of 20 axial by 1 1  radial grid nodes uniformly distributed. Calculations, 
performed with 600 iterations over the calculation domain, converged to give variations 
(A$/$) -= between sweeps. Results were compared with a calculation using the procedures 
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Table I. Nozzle exit plane conditions, case 1 

Jet Free stream 

Velocity (ms-’) 2100 2100 
Temperature (K) 1400 1 400 
Pressure (MPa) 1.0 0.1 
Jet radius (m) 0.02 

Table I1 Nozzle exit plane conditions, case 2 

Jet Free stream 

Velocity (ms-’) 2100 200 
Temperature (K) 1400 300 
Pressure (MPa) 2.0 0.1 
Jet radius (m) 0.02 

described in References 2-4. This provided a one-dimensional line-by-line marching solution to all 
variables, including the pressure correction, and was considered adequate for describing wholly 
supersonic Results of computations by the two methods agreed to within 5 per cent, the 
minor differences being attributed to differing treatments of boundary conditions on adjacent- 
boundary grid cells. 

A second set of calculations studied predictions in the embedded subsonic volume of an exhaust 
(see Figure 5). Conditions were originally obtained from a marching-scheme calculation based on 
the conditions given in Table 11. 

The original calculation failed at 0.7 m and the iterative calculation began at 0.64 m. Again 
convergence was obtained within 600 sweeps and a region of subsonic flow was predicted between 
0.6 and 0-71 m from the nozzle exit. The flow field for the two calculations is illustrated in Figure 5 
and the Mach number contours for the second are presented in Figure 6. It is seen that the 2D 
pressure-correction sequence predicts an immediate contraction of the flow field (Figure 5) 
simultaneous with the formation of the Mach disc. This structure is seen more clearly in the Mach 
number contours of Figure 6. The subsonic volume, enveloped by the sonic line, contracts slightly 
and then forms a tail following the general trend of the contours in this region. Upstream of the 
Mach disc there is a plateau of high Mach number contours which fall off sharply towards the axis 
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Figure 6. Contours of constant Mach number in locality of embedded subsonic flow 

but more gradually towards the free boundary. The highest gradient of Mach number is located 
near to the tail of the subsonic volume. 

Finally, calculations were performed to identify the sensitivity of predictions to variations in 
inlet data. Results discussed here relate to conditions determined from a marching scheme 
calculation based on the conditions of Table I1 but with a nozzle-exit/ambient pressure ratio of 40. 
A two-dimensional pressure-correction equation calculation converged and predicted a region of 
subsonic flow from 0.87 to 0.9 m on the jet axis. Although subsequent calculations were sensitive to 
perturbations in the inlet streamwise-velocity, pressure and temperature distributions, variations 
were small in comparison with comparable changes to the lateral velocity distribution. To 
illustrate this, centreline pressure profiles from calculations in which the inlet lateral velocities were 
scaled by factors 1.0, 1.3, 107 and 1.9 are given in Figure 7. It is seen that an increase in the lateral 
velocity has the effect of increasing the peak pressure, while moving it closer to the nozzle exit. The 
transition to subsonic flow not only moved systematically upstream, but the width of the region 
increased to occupy 50 per cent of the mixing layer width for the factor = 1.9 calculation. In the 
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neighbourhood of Mach discs in rocket exhausts the lateral velocity gradients can be large and the 
conventional one-dimensional procedures do not provide satisfactory solutions to the momentum 
equation just upstream of the shock. As it is important that the lateral velocity distribution 
provided to the two-dimensional pressure procedure is a good solution to the appropriate 
momentum equation, examination of the velocity fields determines the axial location in the jet 
where iteration should commence. 

CLOSURE 

A procedure for computing the velocity and pressure distributions through regions of 
embedded subsonic flow, as may occur in Mach discs of underexpanded rocket plumes, has 
been described. The procedure has been coded and incorporated in a simplified rocket exhaust 
program in which chemical reaction was not considered. Calculations, for conditions similar to 
those which occur in rocket plumes, have demonstrated that the procedure will compute 
satisfactorily converged and numerically stable results. The motivation for the work was to 
develop a technique which would efficiently compute conditions surrounding a rocket plume 
Mach disc and which may be incorporated in an existing marching solution exhaust structure 
program. The procedures developed may be exploited in other finite-difference programs 
dedicated to computing predominantly supersonic flow, but containing regions of embedded non- 
recirculating subsonic flow. 

APPENDIX: SOLUTION OF THE PRESSURE-CORRECTION EQUATION 

The pressure correction equation (12) has the form:* 

Suppose 

then 

and 

Substitution yields 

P;.(AP - ASNS - AWE,) 
= + + + AS(ES&!E + + AW(NNphW + 

Hence 
Np AN/Dp 
Ep = A,/D, 

Bp Cb + A~(J%PSE + Bs) + AW(NWPNW + Bw)I/Dp 
where 

D p  G A p  - ASNS - AWE, 

Therefore the pressure field is obtained as follows: 

(i) compute Np, Ep, D, starting at low P and stored two-dimensionally 
(ii) compute B, repeatedly using the in-store pkE; p;Yw 

*See Figure 3 for subscript identification. 
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(iii) compute p b  starting at high P 
(iv) repeat until convergence. 

REFERENCES 

1. M. J .  Zucrow and J. D. Hoffmann, Gas Dynamics Vol. 1 ,  
2. D. E. Jensen and A. S. Wilson, ‘Prediction of rocket exhaust flame properties’, Combustion and Flame, 2 5 4 3  (1975). 
3. D. E. Jensen, D. B. Spalding, D. G. Tatchell and A. S. Wilson, ‘Computation of structures of flames with recirculating 

4. N. C. Markatos, D. B. Spalding and D. G. Tatchell, ‘Combustion of hydrogen injected into a supersonic airstream’, 

5. D. B. Spalding, GENMIX: A General Computer Program for Two-dimensional Parabolic Phenomena, Pergamon Press, 

6. F. B. Hildebrand, Introduction to Numerical Analysis, 2nd edn, McCraw-Hill, 1974. 
7. N. C. Markatos, M. R. Malin and G. Cox, ‘Mathematical modelling of buoyancy-induced smoke flow in enclosures’, 

8. A. C. H. Mace, N. C. Markatos, D. B. Spalding and D. G. Tatchel1,‘Analysis of combustion in recirculating flow for 

flow and radial pressure gradients’, Combustion and Flame, 34, 309 (1979). 

NASA CR-2802, 1977. 

1977. 

Int. J .  Heat Mass Transfer, 25, 63-75 (1982). 

rocket exhausts in supersonic streams’, J. Spacecraft and Rockets, 19, (6), 557 (1982). 




